Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mass Spectrom ; 47(5): 567-73, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22549991

RESUMO

DM43 is a circulating dimeric antitoxin isolated from Didelphis aurita, a South American marsupial naturally immune to snake envenomation. This endogenous inhibitor binds non-covalently to jararhagin, the main hemorrhagic metalloproteinase from Bothrops jararaca snake venom, and efficiently neutralizes its toxicity. The aim of this study was to apply mass spectrometry (MS) and surface plasmon resonance (SPR) to improve the molecular characterization of this heterocomplex. The stoichiometry of the interaction was confirmed by nanoelectrospray ionization-quadrupole-time-of-flight MS; from native solution conditions, the complex showed a molecular mass of ~94 kDa, indicating that one molecule of jararhagin (50 kDa) interacts with one monomer of DM43 (43 kDa). Although readily observed in solution, the dimeric structure of the inhibitor was barely preserved in the gas phase. This result suggests that, in contrast to the toxin-antitoxin complex, hydrophobic interactions are the primary driving force for the inhibitor dimerization. For the real-time interaction analysis, the toxin was captured on a sensor chip derivatized with the anti-jararhagin monoclonal antibody MAJar 2. The sensorgrams obtained after successive injections of DM43 in a concentration series were globally fitted to a simple bimolecular interaction, yielding the following kinetic rates for the DM43/jararhagin interaction: k(a) = 3.54 ± 0.03 × 10(4) M(-1) s(-1) and k(d) = 1.16 ± 0.07 × 10(-5) s(-1), resulting in an equilibrium dissociation constant (K(D) ) of 0.33 ± 0.06 nM. Taken together, MS and SPR results show that DM43 binds to its target toxin with high affinity and constitute the first accurate quantitative study on the extent of the interaction between a natural inhibitor and a metalloproteinase toxin, with unequivocal implications for the use of this kind of molecule as template for the rational development of novel antivenom therapies.


Assuntos
Proteínas Sanguíneas/química , Venenos de Crotalídeos/química , Espectrometria de Massas/métodos , Metaloendopeptidases/química , Complexos Multiproteicos/química , Ressonância de Plasmônio de Superfície/métodos , Proteínas Sanguíneas/metabolismo , Venenos de Crotalídeos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Cinética , Metaloendopeptidases/metabolismo , Peso Molecular , Complexos Multiproteicos/metabolismo , Veneno de Bothrops jararaca
2.
Cancer Res ; 71(2): 360-70, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21224360

RESUMO

Focal adhesion kinase (FAK) functions downstream of integrins and growth factor receptors to promote tumor cell motility and invasion. In colorectal cancer, FAK is activated by amidated gastrin, a protumorigenic hormone. However, it is unclear how FAK receives signals from the gastrin receptor or other G-protein-coupled receptors that can promote cell motility and invasion. The Rho guanine-nucleotide exchange factor p190RhoGEF (Rgnef) binds FAK and facilitates fibroblast focal adhesion formation on fibronectin. Here we report that Rgnef mRNA and protein expression are significantly increased during colorectal tumor progression. In human colon carcinoma cells, Rgnef forms a complex with FAK and upon gastrin stimulation, FAK translocates to newly-forming focal adhesions where it facilitates tyrosine phosphorylation of paxillin. short hairpin (shRNA)-mediated knockdown of Rgnef or FAK, or pharmacological inhibition of FAK activity, is sufficient to block gastrin-stimulated paxillin phosphorylation, cell motility, and invadopodia formation in a manner dependent upon upstream cholecystokinin-2 receptor expression. Overexpression of the C-terminal region of Rgnef (Rgnef-C, amino acid 1,279-1,582) but not Rgnef-CΔFAK (amino acid 1,302-1,582 lacking the FAK binding site) disrupted endogenous Rgnef-FAK interaction and prevented paxillin phosphorylation and cell motility stimulated by gastrin. Rgnef-C-expressing cells formed smaller, less invasive tumors with reduced tyrosine phosphorylation of paxillin upon orthotopic implantation, compared with Rgnef-CΔFAK-expressing cells. Our studies identify Rgnef as a novel regulator of colon carcinoma motility and invasion, and they show that a Rgnef-FAK linkage promotes colon carcinoma progression in vivo.


Assuntos
Neoplasias Colorretais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sequência de Aminoácidos , Animais , Células CACO-2 , Movimento Celular/fisiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Ativação Enzimática , Matriz Extracelular/metabolismo , Feminino , Quinase 1 de Adesão Focal/antagonistas & inibidores , Gastrinas/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Paxilina/metabolismo , Fosforilação , Transdução de Sinais
3.
Cancer Biol Ther ; 9(10): 764-77, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20234191

RESUMO

Tumor cells can grow in an anchorage-independent manner. This is mediated in part through survival signals that bypass normal growth restraints controlled by integrin cell surface receptors. Focal adhesion kinase (FAK) is a cytoplasmic protein-tyrosine kinase that associates with integrins and modulates various cellular processes including growth, survival, and migration. As increased FAK expression and tyrosine phosphorylation are associated with tumor progression, inhibitors of FAK are being tested for anti-tumor effects. Here, we analyze PND-1186, a substituted pyridine reversible inhibitor of FAK activity with a 50% inhibitory concentration (IC50) of 1.5 nM in vitro. PND-1186 has an IC50 of ~100 nM in breast carcinoma cells as determined by anti-phospho-specific immunoblotting to FAK Tyr-397. PND-1186 did not alter c­Src or p130Cas tyrosine phosphorylation in adherent cells, yet functioned to restrain cell movement. Notably, 1.0 µM PND-1186 (>5-fold above IC50) had limited effects on cell proliferation. However, under non-adherent conditions as spheroids and as colonies in soft agar, 0.1 µM PND-1186 blocked FAK and p130Cas tyrosine phosphorylation, promoted caspase-3 activation, and triggered cell apoptosis. PND-1186 inhibited 4T1 breast carcinoma subcutaneous tumor growth correlated with elevated tumor cell apoptosis and caspase 3 activation. Addition of PND-1186 to the drinking water of mice was well tolerated and inhibited ascites- and peritoneal membrane-associated ovarian carcinoma tumor growth associated with the inhibition of FAK Tyr-397 phosphorylation. Our results with low-level PND-1186 treatment support the conclusion that FAK activity selectively promotes tumor cell survival in three-dimensional environments.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Aminopiridinas/química , Animais , Antineoplásicos/química , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proteína Substrato Associada a Crk/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/antagonistas & inibidores
4.
Cancer Biol Ther ; 9(10): 778-90, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20234193

RESUMO

Tumor metastasis is a leading cause of cancer-related death. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase recruited to integrin-mediated matrix attachment sites where FAK activity is implicated in the control of cell survival, migration, and invasion. Although genetic studies support the importance of FAK activity in promoting tumor progression, it remains unclear whether pharmacological FAK inhibition prevents tumor metastasis. Here, we show that the FAK inhibitor PND-1186 blocks FAK Tyr-397 phosphorylation in vivo and exhibits anti-tumor efficacy in orthotopic breast carcinoma mouse tumor models. PND-1186 (100 mg/kg intraperitoneal, i.p.) showed promising pharmacokinetics (PK) and inhibited tumor FAK Tyr-397 phosphorylation for 12 hours. Oral administration of 150 mg/kg PND-1186 gave a more sustained PK profile verses i.p., and when given twice daily, PND-1186 significantly inhibited sygeneic murine 4T1 orthotopic breast carcinoma tumor growth and spontaneous metastasis to lungs. Moreover, low-level 0.5 mg/ml PND-1186 ad libitum administration in drinking water prevented oncogenic KRAS- and BRAF-stimulated MDA-MB-231 breast carcinoma tumor growth and metastasis with inhibition of tumoral FAK and p130Cas phosphorylation. Although PND-1186 was not cytotoxic to cells in adherent culture, tumors from animals receiving PND-1186 exhibited increased TUNEL staining, decreased leukocyte infiltrate and reduced tumor-associated splenomegaly. In vitro, PND-1186 reduced tumor necrosis factor-a triggered interleukin-6 cytokine expression, indicating that FAK inhibition may impact tumor progression via effects on both tumor and stromal cells. As oral administration of PND-1186 also decreased experimental tumor metastasis, PND-1186 may therefore be useful clinically to curb breast tumor progression.


Assuntos
Aminopiridinas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Neoplasias Pulmonares/secundário , Administração Oral , Aminopiridinas/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteína Substrato Associada a Crk/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Fosforilação/efeitos dos fármacos , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Toxicon ; 55(6): 1093-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20056118

RESUMO

SVMPs are multi-domain proteolytic enzymes in which disintegrin-like and cysteine-rich domains bind to cell receptors, plasma or ECM proteins. We have recently reported that jararhagin, a P-III class SVMP, binds to collagen with high affinity through an epitope located within the Da-disintegrin sub-domain. In this study, we evaluated the binding of jararhagin to alpha(2)beta(1) integrin (collagen receptor) using monoclonal antibodies and recombinant jararhagin fragments. In solid phase assays, binding of jararhagin to alpha(2)beta(1) integrin was detectable from concentrations of 20 nM. Using recombinant fragments of jararhagin, only fragment JC76 (residues 344-421), showed a significant binding to recombinant alpha(2)beta(1) integrin. The anti-jararhagin monoclonal antibody MAJar 3 efficiently neutralised binding of jararhagin to collagen, but not to recombinant alpha(2)beta(1) integrin nor to cell-surface-exposed alpha(2)beta(1) integrin (alpha(2)-K562 transfected cells and platelets). The same antibody neutralised collagen-induced platelet aggregation. Our data suggest that jararhagin binding to collagen and alpha(2)beta(1) integrin occurs by two independent motifs, which are located on disintegrin-like and cysteine-rich domains, respectively. Moreover, toxin binding to collagen appears to be sufficient to inhibit collagen-induced platelet aggregation.


Assuntos
Colágeno/metabolismo , Venenos de Crotalídeos/metabolismo , Integrina alfa2beta1/metabolismo , Células K562/metabolismo , Metaloendopeptidases/metabolismo , Inibidores da Agregação Plaquetária/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Plaquetas/efeitos dos fármacos , Colágeno/efeitos dos fármacos , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/farmacologia , Humanos , Integrina alfa2beta1/efeitos dos fármacos , Células K562/efeitos dos fármacos , Metaloendopeptidases/imunologia , Metaloendopeptidases/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/imunologia , Inibidores da Agregação Plaquetária/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transfecção , Veneno de Bothrops jararaca
6.
Toxicon ; 42(5): 499-507, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14529731

RESUMO

The Thalassophryne nattereri fish venom induces a severe burning pain, oedema, and necrosis observed both clinically and experimentally. The present study was carried out in order to describe the pattern of local acute inflammatory response after T. nattereri venom injection. Our findings show that the edematogenic response induced by T. nattereri venom in footpad of mice was dose- and time dependent, and remained significantly elevated over 48 h after injection. Analysis of footpad homogenates were tested for the presence of TNF-alpha, IL-1beta and IL-6, and demonstrated augmented levels of these cytokines. Our results showed that the injection of venom developed an inadequate cellular inflammatory response evidenced by poor infiltration of mononuclear cells, preceded by decreased number of these cells in peripheral blood. In contrast, we observed an early intense recruitment of neutrophil to peritoneal cavity, accompanied by a significant decrease in the number of mononuclear cells. A drastic increase in the total amount of cells, mainly in neutrophils, followed by mononuclear cell recruitment was observed 24 h. In addition, we also demonstrated that T. nattereri venom affects the viability of mononuclear cells (J774A1) in culture. We conclude that the scarcity of inflammatory cellular influx into local lesions (intraplantar) induced by T. nattereri venom could be a consequence of an impaired blood flow in venules at injured tissue and cytotoxic effect of the venom on inflammatory cells can contribute to this impairment.


Assuntos
Batracoidiformes , Venenos de Peixe/farmacologia , Venenos de Peixe/toxicidade , Inflamação/induzido quimicamente , Animais , Linhagem Celular , Sobrevivência Celular , Quimiotaxia de Leucócito/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Vida Livre de Germes , Interleucina-1/análise , Interleucina-6/análise , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/análise
7.
Toxicon ; 42(7): 809-16, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14757213

RESUMO

Snake venom metalloproteinases (SVMPs) are present in large quantities in venoms of viper snakes and also in some elapids. Jararhagin is a representative of a P-III multidomain hemorrhagic SVMP present in Bothrops jararaca venom. It is comprised of a catalytic, a disintegrin-like and a cysteine-rich domain. Seven anti-jararhagin monoclonal antibodies (MAJar 1-7) were produced, of which six reacted with the disintegrin domain. MAJar 3 recognized an epitope present at the C-terminal part of the disintegrin-like domain, and neutralized jararhagin-induced hemorrhage. In this study, we evaluated the reactivity of these monoclonal antibodies with venoms from 27 species of snakes belonging to different families. MAJar 3 recognized most of the hemorrhagic venoms. By ELISA, MAJar 3 reacted strongly with venoms from Viperidae family and weakly with Colubridae and Elapidae venoms. This recognition pattern was due to bands between 50 and 80 kDa, corresponding to P-III SVMPs. This antibody preferentially neutralized the hemorrhage induced by venoms of Bothrops snakes. This fact suggests that the epitope recognized by MAJar 3 is present in other metalloproteinases throughout snake phylogeny. However, slight structural differences in the epitope may result in insufficient affinity for neutralization of biological activities.


Assuntos
Anticorpos Monoclonais/imunologia , Bothrops/classificação , Venenos de Crotalídeos/imunologia , Epitopos/imunologia , Hemorragia/imunologia , Metaloproteases/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Bothrops/genética , Bothrops/imunologia , Colubridae/genética , Colubridae/imunologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/toxicidade , Elapidae/genética , Elapidae/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Epitopos/genética , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Metaloendopeptidases/química , Metaloendopeptidases/genética , Metaloendopeptidases/imunologia , Metaloproteases/química , Metaloproteases/genética , Camundongos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Viperidae/genética , Viperidae/imunologia , Veneno de Bothrops jararaca
8.
Toxicon ; 42(7): 801-8, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14757212

RESUMO

Snake Venom Metalloproteinases (SVMPs) are synthesized as zymogens and undergo proteolytic processing resulting in a variety of multifunctional proteins. Jararhagin is a P-III SVMP, isolated from the venom of Bothrops jararaca, comprising metalloproteinase, disintegrin-like and cysteine-rich domains. The catalytic domain is responsible for the hemorrhagic activity. The disintegrin-like/cysteine-rich domains block alpha2beta1 integrin binding to collagen and apparently enhance the hemorrhagic activity of SVMPs. The relevance of disintegrin-like domain is described in this paper using a series of mouse anti-jararhagin monoclonal antibodies (MAJar 1-7). MAJar 3 was the only antibody able to completely neutralize jararhagin hemorrhagic activity. Neutralization of catalytic activity was partial by incubation with MAJar 1. MAJars 1 and 3 efficiently neutralized jararhagin binding to collagen with IC50 of 330 and 8.4 nM, respectively. MAJars 1 and 3 recognized the C-terminal portion of the disintegrin domain, which is apparently in conformational proximity with the catalytic domain according to additivity tests. These data suggest that disintegrin-like domain epitopes are in close contact with catalytic site or functionally modulate the expression of hemorrhagic activity in SVMPs.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/farmacologia , Metaloproteases/química , Animais , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Colágeno/química , Venenos de Crotalídeos/química , Venenos de Crotalídeos/imunologia , Hemorragia/induzido quimicamente , Metaloendopeptidases/química , Metaloendopeptidases/imunologia , Metaloendopeptidases/farmacologia , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Veneno de Bothrops jararaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...